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Abstract

The efficiency gains obtained using higher-order implicit Runge–Kutta (RK) schemes as compared with the second-

order accurate backward difference schemes for the unsteady Navier–Stokes equations are investigated. Three different

algorithms for solving the nonlinear system of equations arising at each time step are presented. The first algorithm

(nonlinear multigrid, NMG) is a pseudo-time-stepping scheme which employs a nonlinear full approximation storage

(FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on inexact

Newton�s methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left

preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson�s
iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the generalized

minimal residual method. Results demonstrating the relative superiority of these Newton�s method based schemes are

presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes such as

fourth-order Runge–Kutta (RK64) with the more efficient inexact Newton�s method based schemes (LMG).

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The rapid increase in available computational power over the last decade has enabled higher resolution

flow simulations and more widespread use of unstructured grid methods for complex geometries. While

much of this effort has been focused on steady-state calculations in the aerodynamics community, the need

to accurately predict off-design conditions, which may involve substantial amounts of flow separation,

points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily
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require several orders of magnitude more computational effort than a corresponding steady-state simula-

tion. For this reason, techniques for improving the efficiency of unsteady flow simulations are required if

such calculations are to be feasible in the foreseeable future. The purpose of this work is to investigate

possible reductions in computer time due to the choice of an efficient time integration scheme from a series

of schemes differing in the order of time accuracy, and by the use of more efficient techniques to solve the

nonlinear equations which arise while using implicit time integration schemes. This investigation is carried

out in the context of a two-dimensional unstructured mesh laminar Navier–Stokes solver.

Implicit in any comparison of efficiency is a precise error tolerance requirement. For stringent accuracy
requirements, high-order temporal discretization schemes are well known to be superior to lower-order (e.g.

second-order) schemes, due to their superior asymptotic properties. However, for many large-scale engi-

neering calculations, such as unsteady Reynolds-averaged Navier–Stokes (RANS) simulations, where the

time scales of interest are much larger than the spatial scales, larger temporal error tolerances

(Oð10�2Þ–Oð10�3Þ) are generally acceptable, and second-order accurate time discretizations are currently

widely used, while higher-order methods are generally avoided due to their increased cost per time step.

Recently, the use of higher-order accurate implicit Runge–Kutta (RK) schemes has been shown to produce

efficiency gains even for relatively coarse error tolerances using a production structured-mesh Navier–
Stokes solver [1].

In this paper, we perform a similar investigation within an unstructured mesh setting. Additionally, we

investigate the efficiency of various solution techniques for solving the nonlinear problems which arise at

each time step for the various time discretizations considered. We consider three solution techniques,

namely, a nonlinear multigrid (NMG) method which solves the nonlinear problem directly through pseudo-

time-stepping, and two variants of an inexact Newton scheme, where the linear system at each Newton

iteration is partially solved using a linear multigrid (LMG) scheme or a multigrid preconditioned gen-

eralized minimal residual (PGMRES) approach. Because high-order time discretizations achieve high
temporal accuracy with relatively large time steps, thus increasing the condition number of the nonlinear

problem, the use of efficient solvers takes on additional significance in such cases.

NMG methods were originally developed for steady-state fluid flow problems and subsequently adapted

to unsteady flow problems [2–4]. Newton-based methods have often been avoided in this context due to the

additional memory overheads incurred by such methods and the difficulties in providing reliable initial-

izations for nonlinear convergence. However, Newton-based methods have been shown to offer the po-

tential for higher computational efficiency by avoiding frequent nonlinear residual evaluations [5].

Furthermore, the disadvantages of Newton-based methods are less relevant in the context of an unsteady
flow solver, where a close initial solution is always available from the previous time step, and where

memory considerations are often secondary to CPU time considerations.

In this paper, we illustrate the potential savings achieved using higher-order time discretizations and

more efficient nonlinear solvers for unsteady flow simulations on unstructured grids. We investigate the

interaction between the time-discretization scheme and the nonlinear solution technique as a function of

temporal accuracy and show that the beneficial effects are multiplicative, producing up to an order of

magnitude savings in computational effort.
2. Base solver

2.1. Spatial discretization

For the purpose of comparison, an existing two-dimensional unstructured multigrid steady-state Na-

vier–Stokes solver developed in [6] was modified to simulate transient flows by incorporating various
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physical time-stepping schemes. The flow equations are discretized using a finite-volume approach. Flow

variables are stored at the vertices of the mesh, and control volumes are formed by the median-dual graph

of the original mesh, as shown in Fig. 1. A control-volume flux balance is computed by summing fluxes

evaluated along the control-volume faces, using the average values of the flow variables on either side of the

face in the flux computation. The construction of convective terms corresponds to a central difference

scheme which requires additional dissipation terms for stability. These may either be constructed explicitly

as a blend of Laplacian and biharmonic operators, or may be obtained by writing the residual of a standard

upwind scheme as the sum of a convective and dissipation term

Xneighbors

k¼1

1

2
fFðwiÞ þ FðwkÞg � nik �

1

2
jAikjðwL � wRÞ; ð1Þ

where the convective fluxes are denoted by FðwÞ, nik represents the normal vector of the control-volume face
separating the neighboring vertices i and k, and Aik is the flux Jacobian evaluated in the direction normal to

this face. The variables wL and wR represent extrapolated flow properties at the left- and right-hand sides

of the control-volume face, respectively. A matrix-based artificial dissipation scheme is obtained by utilizing

the same transformation matrix jAikj as the upwind scheme, but using this to multiply a difference of

blended first and second differences rather than a difference of reconstructed states at control-volume

boundaries. For the calculations performed in this work, which involve only subsonic flows, the matrix

dissipation formed using only second differences has been used exclusively, and the physical viscous terms

for the Navier–Stokes equations are discretized to second-order accuracy using a finite-volume approxi-
mation.

2.2. Temporal discretization

Time is discretized in a fully implicit sense using both multistep backward difference formulas (BDF) and

multistage RK schemes. There are two mathematical properties that are desirable of a numerical integrator

[1,7,8]. The first is the ‘‘A-stability’’ property which guarantees that all eigenvalues lying in the left-half of

the complex plane will have an amplification factor not greater than unity, independent of the chosen step

size. Hence, the only restriction on the time step with an A-stable scheme is the consideration of solution

accuracy. The second is the ‘‘L-stable’’ property which guarantees that eigenvalues approaching �1 are

damped in one time step.

Multistep BDF formulas, and in particular the second-order accurate BDF scheme (BDF2), are widely
used in the computation of large-scale engineering flows. These schemes require only one nonlinear set of
Fig. 1. Median control volumes for triangular meshes.
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equations to be solved at each time step. They suffer, however, from not being self-starting, are difficult to

use with variable time steps, and are not A-stable beyond second-order temporal accuracy.

On the other hand, multistage RK schemes are self-starting, are easily implemented in a variable time-

stepping mode, and can be designed with A- and L-stability properties for any temporal order. However,

these schemes require multiple nonlinear solves at each time step, and hence have often been discounted as

noncompetitive compared to BDF schemes. One of the objectives of this paper is to investigate the relative

efficiencies of BDF and RK schemes in computing time-dependent solutions to a given level of accuracy.

Consider the integration of the system of ordinary differential equations (ODEs) represented by the
equation

dw

dt
¼ Sðt;wðtÞÞ; ð2Þ

where the vector S results from the spatial discretization of the equations of fluid mechanics. The general

formula for a k-step BDF scheme can be written as

wnþk ¼ �
Xk�1

i¼0

aiw
nþi þ DtbkS

nþk: ð3Þ

BDF schemes require the storage of k þ 1 solution levels and the computation of one nonlinear solution at

each time step. For k ¼ 2, the BDF2 scheme is obtained using the coefficients: a0 ¼ 1=3, a1 ¼ �4=3,
b2 ¼ 2=3. More details of these standard schemes can be found in [1,9].

Runge–Kutta methods are multistage schemes and are implemented as

wk ¼ wn þ ðDtÞ
Xs

j¼1

akjSðwjÞ; k ¼ 1; 2; . . . ; s; ð4Þ
wnþ1 ¼ wn þ ðDtÞ
Xs

j¼1

bjSðwjÞ; ð5Þ

where s is the number of stages and aij and bj are the Butcher coefficients of the scheme. Following the
previous work by Bijl et al. [1] we focus on the ESDIRK class of RK schemes, which stands for explicit first

stage, single diagonal coefficient, diagonally implicit Runge–Kutta. The Butcher table for a six-stage

ESDIRK scheme is shown in Table 1.

In Table 1, the ck coefficients, which are of the form: c1 ¼ 0, cs ¼ 1:0, ck�1 < ck < ckþ1, denote the point

in the time interval ½t; t þ Dt�. Although these coefficients are not used in the evaluation of the time-stepping

scheme, they are shown to illustrate the fact that the RK scheme involves the evaluation of the residual at

various locations in time for each time step. These schemes are characterized by a lower triangular form of

the coefficient table, thus resulting in a single implicit solve at each individual stage. The first stage is explicit
Table 1

Butcher tableau for the ESDIRK class of RK schemes with number of stages, s ¼ 6

c1 ¼ 0 0 0 0 0 0 0

c2 a21 a66 0 0 0 0

c3 a31 a32 a66 0 0 0

c4 a41 a42 a43 a66 0 0

c5 a51 a52 a53 a54 a66 0

c6 ¼ 1 b1 b2 b3 b4 b5 a66
wnþ1 b1 b2 b3 b4 b5 a66
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(ak1 ¼ 0) and the last stage coefficients take on the form akj ¼ bj, thus enabling Eq. (5) to be simplified

as

wnþ1 ¼ wk¼s: ð6Þ

We use the following notation, RKxy refers to an ESDIRK scheme which has x stages and yth order ac-
curacy. Bijl et al. [1] have compared these schemes and found RK64 to perform well. The numerical values

for the coefficients of this scheme are given in Appendix A. More details in general about ESDIRK schemes

can be found in [8].
3. Implicit solution technique

Both BDF and RKxy schemes require the solution of a nonlinear system of equations. BDF schemes
require the solution of one nonlinear equation per time step. In the case of BDF, a nonlinear residual, R(w),

can be defined from Eq. (3) and is given by

RðwÞ � RðwnþkÞ � wnþk

Dt
� bkS

nþk þ SRCBDF; ð7Þ

where the superscript on w has been dropped for the sake of simplicity. SRCBDF is the source term inde-
pendent of w � wnþk and is given by

SRCBDF � 1

Dt

Xk�1

i¼0

aiw
nþi

" #
: ð8Þ

In the case of RKxy schemes, a nonlinear system arises at each stage of the time-stepping scheme and hence

more than one nonlinear solve per time step is required. Again, a nonlinear residual, R(w) for each stage of
the RKxy scheme can be defined using Eq. (4) as follows:

RðwÞ � RðwkÞ � wk

Dt
� akkSðwkÞ þ SRCRK; ð9Þ

where the superscript on w has again been dropped for the sake of simplicity. Also, SRCRK, is the source
term independent of w � wk and is given by

SRCRK � �wn

Dt
�
Xk�1

j¼1

akjSðwjÞ: ð10Þ

Hence, in both BDF and RKxy we are required to obtain the solution of the nonlinear system of equations

RðwÞ ¼ 0: ð11Þ

Three different methods are proposed for solving Eq. (11) and their relative performances are studied. The

three methods, in this paper, are henceforth referred to as:

1. Nonlinear multigrid.

2. Linear multigrid.

3. Preconditioned generalized minimal residual.

In NMG, a pseudo-time-stepping scheme is employed to obtain the solution of the nonlinear system of

equations, which is accelerated using a nonlinear full approximation storage (FAS) agglomeration multi-
grid method [6,5].
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In the other two approaches, an inexact Newton solution strategy is used to solve the nonlinear

system of equations [10,6,11]. The resulting linear system of equations is solved using iterative/Krylov

techniques. To accelerate convergence, the linear system is left preconditioned using an approximate

inverse to the first-order accurate Jacobian which in itself is employed as an approximation to the

Jacobian of the second-order accurate discretization. The last two approaches differ only in the methods

used to solve the preconditioned linear system of equations. LMG uses the Richardson�s iterative

method while PGMRES uses the generalized minimal residual method developed by Yaad and Schultz

[12].

3.1. Nonlinear multigrid

In a pseudo-time-stepping scheme, the equations are integrated in pseudo-time until Eq. (11) is satisfied.

dw

dt�
þ RðwÞ ¼ 0; ð12Þ

where t� is the pseudo-time. Since we do not require a pseudo-time accurate solution, the equations are

preconditioned to accelerate the convergence. Hence, we have

P�1 dw

dt�
þ RðwÞ ¼ 0: ð13Þ

The equations are integrated in pseudo-time using an explicit preconditioned multi-stage scheme [13], which

can be written as

wð0Þ ¼ w½k�;

wð1Þ ¼ wð0Þ � Dt�PRðwð0ÞÞ;

..

.
ð14Þ

wðqÞ ¼ wðq�1Þ � Dt�PRðwðq�1ÞÞ;
w½kþ1� ¼ wðqÞ;

for a q-stage scheme.

An agglomeration multigrid strategy previously developed as a solver for steady-state problems [13] is

used to further accelerate convergence. The agglomeration multigrid may be viewed as a simplified alge-

braic multigrid strategy. Coarse level grids are constructed by fusing together or agglomerating neighboring
control volumes to form a coarser set of larger but more complex control volumes. In the algebraic in-

terpretation of agglomeration multigrid, the coarse levels are no longer geometric grids, but represent

groupings of fine grid equations which are summed together to form the coarse grid equations sets [14,15]

The basic smoother on each grid level is a three-stage explicit preconditioned multi-stage scheme with stage

coefficients optimized for high frequency damping properties [16].

The preconditioner, P is chosen to be the block diagonal of the Jacobian of the residual, R(w),

P�1
ii ¼ Dii ¼

oRi

owi

� �
wð0Þ

: ð15Þ

This is referred to as Jacobi preconditioning and provides substantial increases in efficiency when upwind or

matrix dissipation discretizations are used [17]. It should be noted that the use of Jacobi preconditioning

involves inverting a 4� 4 matrix for each vertex at each stage.
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3.2. Inexact Newton’s methods

To solve the nonlinear system of equations RðwÞ ¼ 0, Newton�s method requires the solution of a series

of linear systems of the form

oR

ow

� �
w½k�

dw½k� ¼ �Rðw½k�Þ; ð16Þ

where

w½kþ1� ¼ w½k� þ dw½k�: ð17Þ

Let

x � dw½k�; r � R w½k�� �
; A � oR

ow

� �
w½k�

: ð18Þ

Hence, Eq. (16) now becomes

Ax ¼ �r: ð19Þ

Traditionally, there have been two main obstacles to the use of Newton�s method for large-scale multi-

physics applications.

(1) An initial guess inside of the radius of convergence is required for Newton’s method to converge.

However, for unsteady problems, a good initial guess is provided by the solution at the previous time step.

If the Newton�s method does not converge, then by lowering the time step one can get the initial guess as

close as necessary to the solution at the next time level. In the calculations presented in this paper, no

difficulties were encountered in the convergence of the Newton iterations for any of the time steps used.
(2) Construction and storage of the Jacobian matrix, A becomes prohibitive. This problem is particularly

exacerbated in three-dimensional for higher-order spatial discretizations which are not confined to the

nearest neighbor stencils. This problem is overcome by the use of Jacobian-free methods to solve the linear

system of equations. However, additional memory is still required to store the first-order Jacobian for the

preconditioning operation, and the various Krylov vectors for the GMRES scheme. On the other hand, the

use of additional memory can be rationalized if this produces substantial gains in CPU time, particularly

for unsteady flow simulations where cpu time is the dominant concern.

Additionally, in order to improve the computational efficiency of these methods, we use an inexact
Newton�s method [10,18] where the arising system of equations are not solved exactly. In this paper, we

employ a very simplistic method where the number of iterations carried out by the underlying iterative

linear solver is held fixed. In its exact form, Newton�s method provides quadratic convergence. However

due to the various approximations employed by the solution method in this paper, this rate of convergence

is not achieved.
3.3. Preconditioned inexact Newton’s method

In order to achieve rapid convergence of the linear problem at each Newton iteration, preconditioning

methods are used to cluster the eigenvalues of the system. We adopt the approach of left preconditioning in

order to achieve this desirable distribution of eigenvalues. The preconditioned system can be written as

PNAx ¼ �PNr: ð20Þ

We make the following comments on the preconditioning:
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• The preconditioner, PN, is looked upon here as an operator as opposed to a matrix. Hence, PN, may or

may not be able to be written as a matrix.

• The preconditioner must be chosen as close as possible to A�1 so that PNA � I, where I is the identity

operator.
• Since each step of the Newton�s method, Eq. (16), moves w½k�, towards the solution, w�, of RðwÞ ¼ 0, any

operator which produces a correction dw½k� ¼ x to advance w½k� towards w� would serve as a reasonable

preconditioner.

• Based on the above fact, single or multiple cycles of the NMG method discussed in the earlier subsection

could be used as a preconditioner. However, this is computationally inefficient as it does not recognize

the fact that we are now solving a system of linear equations.

Keeping in mind the above observations we now propose a better preconditioner, PN. We first choose

PN ¼ eAA�1, where eAA is a matrix approximation to the Jacobian, A. Considerations governing the choice ofeAA would be:

1. Storage requirements for eAA must not be prohibitive. Storage for eAA must use less space than that needed for

A or else there would be no space gain in using Jacobian-free methods.

2. The inverse of eAA must be simple to calculate or approximate. If one is able to compute an approximate

inverse to eAA fairly easily using iterative methods, this new operator, PN ¼ ffAAfAA�1
would serve as an ap-

propriate preconditioner. The two tildes are used to symbolize the fact that there are two approximations

involved in the definition of the PN:

(a) eAA which is an approximation to the Jacobian, A.
(b) An approximation in computing the inverse of eAA.

In this paper, we choose eAA to be the Jacobian of the first-order accurate, nearest neighbor discretization of

the nonlinear set of equations. Hence, the storage of eAA requires substantially less memory than that of the

full Jacobian A of the second-order accurate scheme.eAA�1 is computed approximately using a fixed number of W-cycles of a LMG method. This particular
multigrid method can be viewed as the linear analogue of the nonlinear FAS agglomeration multigrid

scheme described in the NMG method. This approach has been previously described in detail in [5]. In this

particular approach the coarse level approximations to the Jacobian are obtained taking the Jacobian of the

Galerkin projection of the (frozen) fine grid operator as

AH ¼ o

owH
IHhRhI

h
H

� �
; ð21Þ

as opposed to the more traditional LMG Galerkin projection [19]

AH ¼ IHh
oRh

owH
IhH ¼ IHh AhI

h
H; ð22Þ

where IHh is the restriction operator and IhH is the prolongation operator. This approach was chosen purely

for convenience, as the terms in Eq. (21) are readily available. The smoother on each grid was taken as a

block diagonal Jacobi solver.

3.4. Linear multigrid

In the method referred to as LMG, the LMG preconditioned system arising at each Newton iteration is

solved using a single Richardson iteration. In order to solve the system

PNAx ¼ �PNr; ð23Þ

we define the splitting [20]
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PNA ¼ IþN: ð24Þ

The resulting iterative scheme is defined as

Ixðmþ1Þ ¼ �PNr�NxðmÞ;

IdxðmÞ ¼ �PNr�PNAxðmÞ:
ð25Þ

As indicated earlier, since we are required to solve Eq. (23) only approximately, we carry out only a single

Richardson�s iteration. Assuming xð1Þ ¼ 0, Eq. (25) reduces to

dxð1Þ ¼ �PNr;

xð2Þ ¼ xð1Þ þ dxð1Þ ¼ dxð1Þ ¼ �PNr:
ð26Þ

Hence, we have

dw½k� ¼ xð2Þ ¼ �PNr: ð27Þ

Eq. (27) illustrates the correspondence of this scheme to a Newton�s method in which the first-order ac-

curate Jacobian is used along with a second-order accurate residual.

3.5. Preconditioned generalized minimal residual

Having presented the LMG scheme as a preconditioned Richardson iteration, the PGMRES scheme can

similarly be described as the equivalent scheme obtained when the single Richardson iteration is replaced by

a GMRES Krylov subspace iterative approach [21]. In this method, we use GMRES to solve Eq. (20) in a

matrix-free Newton–Krylov fashion [22], making use of the same preconditioner, PN, which is used in the

LMG method. The matrix-free implementation of PGMRES requires the computation of the product,

PNAx, which is approximated using a first-order Taylor series expansion as

PNAx ¼
PNR w½k� þ �x

� �
�PNR w½k�� �

�
¼

PNR w½k� þ �x
� �

�PNr

�
; ð28Þ

where x is some unit vector and � is a number chosen proportional to the norm of x times the square root of

machine round-off error, close to the square root of machine round-off [10]. We use the restarted form of

GMRES with a fixed number of search directions. While increasing the number of Krylov vectors accel-

erates convergence, storage and cpu time increase with the number of search directions. The optimal

number of search directions is therefore determined experimentally.
4. Validation of the temporal scheme

Numerical experiments have been performed to determine the observed order of accuracy of the various

time integration schemes. The test problem chosen for this purpose consists of the unsteady laminar flow

around a two-dimensional circular cylinder at a Mach number of 0.2. Two different Reynolds numbers,

Re ¼ 1200 and Re ¼ 100 were considered. The initial flow is symmetric with zero lift. As the wake behind

the cylinder starts to grow, it becomes unstable and begins to shed vortices from alternate sides of the

cylinder. The computational grid is shown in Fig. 2. The mesh contains a total of 19,012 points, with 196
points equally spaced on the surface of the cylinder, and a normal spacing of 103 cylinder diameters. The

far-field boundary is a circle concentric with the cylinder and diameter given by 40D where D is the diameter

of the cylinder. A close up of the mesh around the cylinder is shown in Fig. 3



Fig. 2. Computational mesh for circular cylinder.

Fig. 3. Computational mesh in the region around the cylinder.
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Time is nondimensionalized as Ut=D where U is the free stream velocity and D is the diameter of the

cylinder. The initial condition for the various studies was obtained by simulating the limit cycle behavior

for about 10 shedding cycles using a relatively small time step.

4.1. Re¼ 1200 case

Using Dt ¼ 0:025, the Strouhal number, St, was calculated to be 0.2469. This value is compared with affiffiffiffiffiffi
Re

p
-formula fit [23] to the St–Re curve obtained from two different data sources:

• ‘‘Numerical’’ laminar flow, two-dimensional computations by Henderson [24]: the curve fit is given by

St ¼ 0:2731

�
� 1:1129ffiffiffiffiffiffi

Re
p þ 0:4821

Re

�
;

which yields St ¼ 0:2409 at Re ¼ 1200. It can be seen that this compares very well with our calculations.

• Experimental studies in the wake of a circular cylinder: beyond Re ¼ 260, the curve fit is given by

St ¼ 0:2234

�
� 0:3490ffiffiffiffiffiffi

Re
p

�
:
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This gives a St ¼ 0:2133 which is different from our computed St of 0.2469. This is because the wake of

the cylinder transitions to a three-dimensional shedding mode which involves finer-scale streamwise

vortices appearing in the near wake, which cannot be captured in a two-dimensional computation. The

two-dimensional computations by Henderson [24] suffers the same drawback as well. Previous three

dimensional simulations using the same discretization and solution techniques as described herein have

shown good correlation with experimentally determined Strouhal numbers at higher Reynolds numbers

[25].

The variation of CL with time is shown in Fig. 4. A plot of the density contours at an intermediate time is
shown in Fig. 5.

In order to determine the temporal order of accuracy, the test problem was solved using the same initial

condition but with different time steps. The time interval of the study was approximately 1 1
4
shedding cycles.

The solution at the end of the time interval is assumed to have accumulated the temporal error. Integral

measures such as lift on the body, drag due to pressure forces and pitching moment of the body were then

compared as follows to determine the order of accuracy. Let GDt denote the integral measure being com-

pared using a time step Dt, while Gexact denotes the exact solution. We do not know Gexact but based on the

order of accuracy n of the scheme, we expect the following behavior:
Fig. 4. Variation of CL with nondimensional time.

Fig. 5. Density contours calculated using a time step of 0.025.
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GDt ¼ Gexact þ C1ðDtÞn þHigher order terms; ð29Þ

where C1 is a constant. By subtracting from Eq. (29) a similar expression for GDt=2 and neglecting the higher-

order terms, we can obtain the following relation:

GDt � GDt=2 ¼ C1 1

�
þ 1

2n

�
ðDtÞn ¼ C2ðDtÞn; ð30Þ

where C2 is another constant. Eq. (30) can be used to determine the order of accuracy of the scheme which

can then be compared with the expected order of accuracy based on theory.

The order of accuracy was verified for two ESDIRK schemes (RK64 and RK43) and the second-order

BDF (BDF2) scheme. The nonlinear systems which arose were converged until the maximum density

correction, jDqjmax < 10�10. This ensures that the ‘‘iteration error’’ is negligibly small relative to the dis-

cretization error. Figs. 6–8 show the detailed refinement study for the RK64, RK43 and BDF2 schemes,
Fig. 6. Verifying order of accuracy of RK64 in Re ¼ 1200 test case.

Fig. 7. Verifying order of accuracy of RK43 in Re ¼ 1200 test case.



Fig. 8. Verifying order of accuracy of BDF2 in Re ¼ 1200 test case.
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respectively. It can be seen that all the integral measures yield nearly the same quantitative conclusions. The
anomalous behavior for large time steps in Fig. 8 is likely due to the time steps being outside the asymptotic

range. It is also seen that the computed order of accuracy is close to the expected order of accuracy. For

example, Fig. 6 shows that the computed order of accuracy for the RK64 scheme is 3.8938 while the ex-

pected order of accuracy is 4. The small differences between expected and observed accuracy may be at-

tributable to higher-order terms of this asymptotic analysis.

4.2. Re¼ 100 case

Another test case, Re ¼ 100 was chosen as the wake is more laminar and two-dimensional at this

Reynolds number. Using Dt ¼ 0:025, the Strouhal number, St, was calculated to be 0.163. This value was

again compared with a
ffiffiffiffiffiffi
Re

p
-formula fit from [23].

• ‘‘Numerical’’ laminar flow, two-dimensional computations by Henderson [24]: the curve fit is given by

St ¼ 0:2731

�
� 1:1129ffiffiffiffiffiffi

Re
p þ 0:4821

Re

�
;

which yields St ¼ 0:165 at Re ¼ 100.

• Experimental studies in the laminar wake of a circular cylinder: when Re < 180, the curve fit to exper-
imental data is given by

St ¼ 0:2665

�
� 1:018ffiffiffiffiffiffi

Re
p

�
:

This gives a St ¼ 0:1647 at Re ¼ 100.
It can be seen that our results compare well with both experimental results and previous numerical cal-

culations.

In a manner, similar to the procedure described in the Re ¼ 1200 test case, the order of accuracy of

RK64 and BDF2 were verified as well. These results are shown in Figs. 9 and 10. It is again noted that the

computed order of accuracy is very close to the expected order of accuracy for the different schemes.



Fig. 9. Verifying order of accuracy of RK64 in Re ¼ 100 test case.

Fig. 10. Verifying order of accuracy of BDF2 in Re ¼ 100 test case.
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5. Parameter selection for solution schemes

The various solution schemes studied in this work contain a number of parameters which must be chosen

optimally in order to fully exploit the potential efficiencies of each scheme. Because the LMG and

PGMRES methods involve multiple levels of iteration nesting, (e.g. outer Newton, inner multigrid), these
schemes contain more parameter choices and their overall performance is more dependant on the selection

of these parameters. The NMG scheme has been used extensively in the past for steady and unsteady

calculations and is well optimized for such calculations [26,5]. Furthermore, since all schemes rely on a

common multigrid strategy, we choose to adopt a common multigrid approach based on the NMG ex-

perience, using four multigrid levels with a W-cycle for all schemes.
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5.1. Parameter selection in the LMG method

The inexact Newton methods contain various parameters which must be chosen judiciously in order to

optimize the overall run-time of these methods. For the LMG scheme, the parameters to be chosen include:

1. Number of LMG cycles carried out in PN.

2. Number of smoothing iterations carried out on each grid of the multigrid.

Increasing either of these parameters would makePN a better approximation to fAA�1. Fig. 11 illustrates the

effect of increasing the number of LMG cycles used inPN. All the results shown in this section and the next

are carried out using the BDF2 physical time-stepping scheme and a time step of Dt ¼ 0:05.
We observe the following:

1. The rate of convergence slows down as the nonlinear residual decreases. This is due to the inexact solu-

tion of the linear system described by Eq. (20) at each Newton iteration, as we use only a single Rich-

ardson�s iteration to solve the equation. Hence, the quadratic convergence expected of exact Newton�s
methods is not achieved.

2. Increasing the number of LMG cycles in PN can increase the nonlinear convergence by only a finite

amount, and eventually asymptotes to a maximum rate. This is due to the fact the preconditioner PN

is based on a first-order Jacobian, which even if inverted exactly does not correspond to the inverse

of the exact Jacobian, A.
Since, the ultimate goal is to minimize the runtime required to converge the equations, RðwÞ ¼ 0, to a

given tolerance level, we plot the reduction of the residual against runtime for different choices of the

number of LMG cycles. It can be seen from Fig. 12 that the use of two LMG cycles in PN is computa-

tionally most efficient for the range of error tolerances to which the nonlinear equations are converged.

Figs. 13 and 14 show the effect of performing different number of smoothing iterations on each grid of

the multigrid. As expected, Fig. 13 shows that the number of Newton iterations required for a given level of

residual reduction decreases with increase in the number of smoothing iterations.

The study indicates that the use of five smoothing cycles on each grid, while using two LMG cycles,
results in a computationally optimal preconditioner, PN, for the problem under consideration.
Fig. 11. Effect of changing the number of LMG cycles in PN of LMG.



Fig. 12. Effect of changing the number of LMG cycles in PN of LMG on the runtime.

Fig. 13. Effect of changing the number of smoothing iterations carried out on each grid of the multigrid.
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6. Parameter selection in PGMRES

Having selected all required parameters for the LMG preconditioner, PN, the remaining parameter to

be determined in the PGMRES method is the number of search directions. Increasing the number of search

directions provides a more accurate solution to the linear system, which arises at every step of the Newton�s
method. Thus, the Inexact Newton�s method approaches the exact Newton�s method as the number of

search directions is increased.

Fig. 15 shows the effect of increasing the number of search directions on the number of Newton iter-
ations required to converge to the solution of RðwÞ ¼ 0. It can seen that the effect of increasing the search

directions is more pronounced as the nonlinear residual becomes smaller.



Fig. 14. Effect of changing the number of smoothing iterations carried out on each grid of the multigrid on the runtime.
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However, increasing the number of search directions by one incurs the following additional computa-

tional overhead:

• A single evaluation of the nonlinear residual on the fine grid.
• A single evaluation of the preconditioner, PN.

• Additional matrix–vector and vector–vector products required to compute the extra search direction and

the optimal solution, xðmÞ in a larger Krylov subspace.

• Additional storage for the extra search direction.

Hence, the choice of the number of search directions was decided based on minimizing the CPU time

required for a given level of residual reduction. Fig. 16 plots the variation of the nonlinear residual against
Fig. 15. Effect of changing the number of search directions in PGMRES.



Fig. 16. Effect of changing the number of search directions in PGMRES on the runtime.
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runtime for different choices of the number of search directions. It was determined that the use of five

search directions was nearly optimal for most cases.
7. CPU time comparison of different schemes

In this section we examine the computational efficiency of two time-discretization schemes, RK64 and
BDF2 as a function of accuracy levels. We simultaneously investigate the relative performances of the

different implicit solution techniques discussed in this paper. Finally, we show that the combined im-

provements in efficiency obtained by using higher-order schemes and better nonlinear solvers such as LMG

can result in up to an order of magnitude improvement in overall solution efficiency.

In order to compare the different schemes, we compare the CPU times required to advance the solution

from an initial time Ti to a specified final physical time Tf , given an error tolerance in the final solution. In

this study, we assume the error in the lift coefficient, CL, to be a good measure of the integral error in the

final solution. To measure the error in CL, the numerical solution obtained using the RK64 scheme and
Dt ¼ 0:0125 was assumed to be numerically accurate with zero error. Finally, we choose three error tol-

erances, 10�2, 10�3 and 10�4, which we deem to be representative of engineering error tolerances, and make

a detailed comparison of the different schemes. We choose a time interval Tf � Ti ¼ 1, noting that the ratios

of the CPU times of the various schemes should remain invariant with arbitrary choices of the time interval.

The physical time step, Dt, chosen to advance the equations to Tf depends on:
1. The physical time-stepping scheme, in this case either BDF2 or RK64.

2. The error tolerance level.

Fig. 17 plots the variation of the absolute error in CL for the two different physical time-stepping schemes at
Re ¼ 1200. In order to obtain Fig. 17 the nonlinear equations at each time step were converged such that

the rms error in the density residual was less than 10�10, in order to avoid any contamination of the

temporal error. The circle symbols in the figure indicate the time steps used in the following study for both

schemes to achieve the three different prescribed error tolerances.

It can be seen that for the range of error tolerances considered, BDF2 requires a much smaller time step

than RK64. Furthermore, as RK64 is fourth-order accurate in time, the error decreases faster with a

decrease in time step, making it more efficient at lower error tolerance levels.



Fig. 17. Comparison of time steps required for BDF2 and RK64 schemes at Re ¼ 1200.
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Hence, the choice of the physical time-stepping scheme affects the overall efficiency of the simulation in

three ways:

1. The number of time steps required to integrate to Tf , for a given temporal accuracy.

2. The total number of nonlinear solves per time step.

3. The condition number of the nonlinear systems to be solved. The nonlinear systems produced by the RK

scheme are generally more difficult to converge due to the larger time step involved with the higher-order
scheme.

Note that the explicit time step limit, (i.e. CFL¼ 1) is given by Dt ¼ 2� 10�4, since the minimum grid cell

size in this case is 10�3, and the Mach number is 0.2. Hence, for the high-accuracy cases using BDF2, the

explicit time-step limit is approached. This accounts for the speedup in convergence of the implicit system

for these cases. In fact, since multiple iterations are still required to solve the pseudo-time problem, explicit

time-stepping at the somewhat lower explicit time-step limit may be more efficient overall for these high

accuracy cases. However, as the grid is refined (higher spatial resolution), or for larger time steps (lower

temporal accuracy), the implicit schemes become most efficient.
We now try to quantify the efficiency gains by using higher-order schemes and a more efficient implicit

solution technique. A major contributor to the inefficiency of implicit methods is solving the nonlinear

systems at each stage/step to inappropriate sub-iteration tolerances. If the nonlinear system is solved to

tighter tolerances, the additional work does not increase the overall solution accuracy. We do not attempt

to answer this question in any detail, but assume that it is sufficient to converge the nonlinear residual to six

orders of magnitude less than the error in CL. This level was determined through numerical experiments, by

setting various convergence levels and measuring the final temporal error. While the ratio of residual

convergence to error in CL appears relatively large, this is an artifact of the fact that these quantities are
inherently scaled in different manners, since CL represents a global integrated quantity, as opposed to the

average flow field residuals.

In Table 2 we present the CPU times for the different combination of schemes.

In Figs. 18 and 19 we show the nonlinear convergence characteristics of BDF2 and the second stage of

RK64 for the three different CL error tolerances considered. Note that the required levels of convergence are

more stringent for the smaller time steps, as shown by the bar symbol on each line. In the actual com-

putations, the residuals were converged only to these levels. In these figures, however, convergence down to



Table 2

CPU times (in seconds on Pentium IV, 1700 MHz) required for carrying out one physical time step using the different nonlinear solvers,

where time steps are chosen based on the given absolute error tolerances on CL

Scheme Dt NMG LMG PGMRES

CL error¼ 10�2

BDF 0.01842 15.55 5.24 9.00

RK 0.24193 121.56 39.52

CL error¼ 10�3

BDF 0.005825 12.45 4.59 9.01

RK 0.122047 131.4 43.84

CL error¼ 10�4

BDF 0.001846 12.49 5.54 8.76

RK 0.067285 147.14 44.91

Fig. 18. Comparison of the convergence of the nonlinear residual of BDF2 schemes for a single time step using NMG, where Dt�s are
computed based on the given error tolerances on CL. Bars denote levels of convergence required as a function of final CL accuracy.

G. Jothiprasad et al. / Journal of Computational Physics 191 (2003) 542–566 561
machine accuracy is shown to illustrate the overall convergence behavior. These examples all utilize the

NMG scheme.

We observe the following:

1. Faster convergence for smaller error tolerances, as Dt is reduced.
2. Slower overall convergence for RK64 relative to BDF2 for similar error tolerances, as larger time steps

are used in RK64.

3. Although not shown, similar behavior is observed for the other two methods (LMG, PGMRES) as

well.

In Tables 3 and 4 we quantify the efficiency gains obtained by shifting from BDF2 to RK64 for the two

different nonlinear solvers, NMG and LMG, respectively. The numbers in the different columns are ratios

of the corresponding quantities used in RK and BDF respectively. The CPU time for a given time step is an

order of magnitude larger for the RK schemes, and this ratio varies slowly with the increase in accuracy.

This result is a function of the number of nonlinear solutions required per time step, the relative stiffness of



Fig. 19. Comparison of the convergence of the nonlinear residual of RK64 schemes for the first stage of a single time step using NMG,

where Dt�s are computed based on the given error tolerances on CL. Bars denote levels of convergence required as a function of final CL

accuracy.

Table 3

BDF2 to RK64 speedup factors for NMG

Abs. CL error DtRK

DtBDF

CPU timeBDF

CPU timeRK
for one time step Overall gain

10�2 13.13 0.128 1.68

10�3 20.95 0.095 1.99

10�4 36.45 0.085 3.1

Table 4

BDF2 to RK64 speedup factors for LMG

Abs. CL error DtRK

DtBDF

CPU timeBDF

CPU timeRK
for one time step Overall gain

10�2 13.13 0.133 1.75

10�3 20.95 0.105 2.2

10�4 36.45 0.123 4.5
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each nonlinear problem, and the degree to which each system must be converged to maintain overall ac-

curacy. However, the ratios of time steps between the two schemes is large and increases rapidly for higher

accuracy levels, thus making the RK scheme more efficient overall, particularly at the more stringent error

tolerances.
In Fig. 20 we plot the variation of the nonlinear residual for a single time step of BDF2 using different

nonlinear solvers as a function of the number of Newton iterations for LMG and PGMRES, and as a

function of NMG cycles in the case of NMG. The inexact Newton methods exhibit faster convergence rates

per iteration than the NMG method. Furthermore, PGMRES is seen to outperform LMG as well, due to

the fact that PGMRES produces a more accurate solution of the preconditioned linear system, Eq. (23) at

each Newton iteration.

In Fig. 21 we plot the variation of the nonlinear residual for a single time step of BDF2 using different

nonlinear solvers as a function of CPU time. We make the following observations:



Fig. 20. Comparison of the convergence of the nonlinear residual of BDF2 schemes using the three different nonlinear solvers.

Fig. 21. Comparison of the convergence of the nonlinear residual of BDF2 schemes using the three different nonlinear solvers against

CPU time.
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1. LMG is computationally more efficient than NMG as it performs fewer nonlinear residual evalua-

tions.

2. Although PGMRES has faster convergence in terms of Newton Iterations, the additional cost of each
Newton iteration outweighs the gain in nonlinear convergence.

Finally, in Fig. 22 we show the CPU times required to reach Tf � Ti ¼ 1 using the different schemes, versus

the error tolerance level in CL. Fig. 22 clearly indicates that the commonly used combination of BDF2 and

NMG exhibits the lowest computational efficiency for this problem. The most efficient solution strategy is

obtained using the RK64 temporal discretization with the LMG solver, and these gains increase for higher

accuracy levels.



Fig. 22. CPU times required to reach Tf ¼ 1 using the different schemes plotted against the error tolerance level in CL.

Table 5

BDF2-NMG to RK64-LMG speedup factors

Abs. CL error DtRK

DtBDF

CPU timeBDF

CPU timeRK
for one time step Overall gain

10�2 13.13 0.393 5.16

10�3 20.95 0.284 5.95

10�4 36.45 0.278 10.14
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In Table 5, we emphasize the overall gains obtained in shifting from the BDF2-NMG to the RK64-LMG

solution strategy, as a function of the temporal accuracy. The gains obtained between the RK scheme and

the BDF scheme and the gains obtained between the various nonlinear solution strategies are multiplica-

tive, producing a larger overall gain than for either method used alone. This compounded efficiency gain

increases with solution accuracy, yielding up to an order of magnitude improvement for the highest ac-

curacy considered.
8. Conclusions

For problems where the temporal scales are of the same size as the spatial scales, explicit methods remain

the most efficient solution strategy. However, for cases where temporal scales are much larger than the

spatial scales, implicit methods are most efficient. Higher-order temporal discretizations such as RK64 can

be expected to deliver superior efficiency for problems with smooth temporal variations, with increasing

benefits for higher temporal accuracy requirements. The key to the efficient implementation of these im-

plicit schemes is the use of an efficient nonlinear solver. The multigrid based solvers studied in this work
deliver rapid convergence rates which are relatively insensitive to the separation of time and spatial scales.

For the test problem considered in this paper, the implicit multi-stage RK schemes have been shown to

produce higher accuracy at reduced cost as compared to BDF2. Additionally, inexact Newton solution

strategies have been shown to be well suited for solving the nonlinear systems which arise from temporal

discretization at each time step.
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The efficiency gains of both approaches are multiplicative, resulting in large potential savings when both

methods are used in tandem. The combination of RK64 with LMG method worked very well for the error

tolerances considered. The PGMRES algorithm studied in this work provided the fastest asymptotic

convergence among all methods but was found to be noncompetitive due to the slower initial convergence

of the method when only partial convergence of the linear systems is required. In cases where more accurate

linear system solutions are required, PGMRES may be more competitive. Overall efficiency of the time

integration schemes is greatly affected by the degree to which the nonlinear systems at each time step are

converged.
The levels of convergence adopted in this work were determined a posteriori, and are therefore not

predictive. A more exact quantification of the required convergence levels will be required in order to

construct efficient time-dependent solution strategies.Future work will also include the use of temporal

error estimation techniques coupled with dynamically adaptive time-step selection.
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Appendix A. Butcher coefficients for RK64

The Butcher coefficients for the RK64 scheme used in the paper are given in the table below. RK64 is a
six stage with scheme, with fourth-order accuracy and five implicit stages. As in all ESDIRK schemes,

bj ¼ a6j:

0 0 0 0 0 0

0.25 0.25 0 0 0 0
0.137776 )0.055776 0.25 0 0 0

0.144636866 )0.2239319076 0.4492950416 0.25 0 0

0.098258783284 )0.59154424282 0.8102105383 0.28316440571 0.25 0

0.15791629516 0 0.18675894052 0.68056529531 )0.275240531 0.25
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